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Steady adiabatic state: Its thermodynamics, entropy production, energy dissipation, and violation
of Onsager relations
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A class of statistical systems is considered where different degrees of freedom have well-separated charac-
teristic times, and are described by different temperatures. The stationary state is a nonequilibrium state with
a heat flow. A generalized statistical thermodynamics is constructed and a universal variational principle is
proposed. Entropy production and energy dissipation occur at a constant rate. To leading order in the small
ratio of the characteristic times, there exists a universal relation between them. Onsager relations in the context
of heat transfer are also considered. They are always broken, except close to equilibrium.

PACS number~s!: 64.70.Pf, 05.70.Ln, 75.10.Nr, 75.40.Cx
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I. INTRODUCTION

Statistical thermodynamics is a powerful theory for d
scribing equilibrium states@1,2#. Due to the general characte
of the Gibbs distribution, thermodynamics produces univ
sal relations, which apply independently of the detailed
havior. It has been generalized to weakly nonequilibriu
states in an approach first started by Onsager, and fur
developed extensively~see, e.g.,@1–5#!. In this paper we
propose a thermodynamical description for a class of si
tions far from equilibrium: the steady adiabatic state. Hav
a stationary distribution far from Gibbsian, these syste
possess widely separated characteristic times~adiabaticity!
that appear enough to deduce a thermodynamical des
tion.

A frequently encountered generalization of the usual eq
librium is a system interacting with different thermal baths
constant temperatures@6#. In the infinite-time limit the sys-
tem goes to a nonequilibrium steady state with heat curr
between the baths. In contrast to the Gibbs distribution,
steady state depends on the underlying time scales, and
contains information about the dynamics. Therefore, we
it the steady adiabatic state. The system has been studied
one of the minimal models having easily controlled noneq
librium properties@6#. The conceptual and technical adva
tages of this approach were stressed, in particular, by M
ner @5#.

Our investigation focuses on the large separation betw
the characteristic times. On the other hand, we shall spe
neither the Hamiltonian of the system, nor the differen
between temperatures. In that sense the results will be
versal.

Our purposes are the following:~i! To derive the steady
statistical distribution and the corresponding thermodyna
ics; ~ii ! to propose a general variational principle for th
thermodynamics;~iii ! to investigate the important dissipativ
characteristics, such as entropy production and energy d
pation, in the steady state; and~iv! to show the breakdown o
the nonequilibriumOnsager relations for heat transfer.
PRE 621063-651X/2000/62~1!/845~6!/$15.00
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II. THE MODEL AND ITS THERMODYNAMICS

To underline our conclusions, let us introduce a pair
coupled stochastic variablesx1 ,x2 having Hamiltonian
H(x1 ,x2), which interact with different thermal baths at di
ferent characteristic time scales. The Langevin equati
read

G i ẋi52] iH~x1 ,x2!1h i~ t ! ~ i , j 51,2!,

^h i~ t !h j~ t8!&52G iTid i j d~ t2t8!, ~1!

whereG1 ,G2 are the damping constants, and] i5]/]xi . The
Einstein relation between the strength of noise and the da
ing constant holds in Eq.~1!, because the thermal bath
themselves are assumed to be in equilibrium@1–4,6#. The
Fokker-Planck equation that corresponds to Eqs.~1! reads

] tP~x1 ,x2 ;t !1(
i 51

2

] iJi~x1 ,x2 ;t !50, ~2!

Ji52
1

G i
P~x1 ,x2 ;t !] iH~x1 ,x2!2

Ti

G i
] i P~x1 ,x2 ;t !, ~3!

whereP(x1 ,x2 ;t) is the probability distribution, andJ1 ,J2
are the currents of probability.

We shall assume thatx2 is changing much more slowly
thanx1; this is ensured by the conditiong5G1 /G2!1. Let
us first indicate how the stationary distribution can be o
tained to orderg0; this will give us the basic formulation o
the generalized thermodynamics. Equations~1! can be inves-
tigated by the method of adiabatic elimination@7# ~Born-
Oppenheimer method!. First Eq.~1! for x1 is solved keeping
thex2 fixed, which is valid on the relatively short time scale
where only Eq.~1! for x1 is relevant. In this limit the Lange-
vin equation fori 51 has the obvious equilibrium distribu
tion

P0~x1ux2!5
1

Z~x2!
exp@2b1H~x1 ,x2!#, ~4!
845 ©2000 The American Physical Society
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whereZ(x2) is the partition sum for a fixed value ofx2. At
quasiequilibrium of thex2 subsystem this average should
performed using the distribution~4!. In this way we get from
Eqs. ~1! a related dynamics for the slow variable, in whic
the two particle HamiltonianH(x1 ,x2) is replaced by the
effective one-particle HamiltonianHe(x2),

He~x2!52T1 ln Z~x2!. ~5!

We thus have the effective equation of motion

G2ẋ25
]

]x2
T1 ln Z~x2!1h2~ t !, ~6!

and the corresponding Fokker-Planck equation

] tP~x2 ,t !5
1

G2
]2@P~x2 ,t !]2He~x2!1T2]2P~x2 ,t !#.

~7!

As the noise is due to a bath at temperatureT2 @see Eq.~1!#,
the equilibrium distribution of this process reads

P0~x2!5
ZT1 /T2~x2!

Z , Z5E dx2ZT1 /T2~x2!. ~8!

The joint distribution ofx1 andx2 can now be written as

P0~x1 ,x2!5P0~x1ux2!P0~x2!. ~9!

Let us stress that this steady state is not Gibbsian. It will
so if the coupling betweenx1 andx2 is weak; then the state
~9! will be the product of two separate Gibbsian distributio
at the temperaturesT1 and T2. On the other hand, ifT1
5T2 one obtains from Eq.~9! the usual Gibbs distribution. A
similar approach is applied in spin glasses and other di
dered systems wheren5T1 /T2 is considered as a ‘‘dynami
cally generated’’ replica number@8#.

If the state of a system is described by a distribut
P(x1 ,x2 ,t)5P(x1ux2 ,t)P(x2 ,t), then there are general defi
nitions for the mean energy and entropy@4#:

U5E dx1dx2P~x1 ,x2 ,t !H~x1 ,x2!, ~10!

S52E dx1dx2P~x1 ,x2 ,t !ln P~x1 ,x2 ,t !. ~11!

This latter Boltzmann-Gibbs-Shannon formula correspo
to the general statistical definition of entropy, relevant a
outside of equilibrium@4#. The total entropy can be decom
posed as

S5S11S2 ,

S15E dx2 P~x2 ,t !S 2E dx1P~x1ux2 ,t !ln P~x1ux2 ,t ! D ,

S252E dx2P~x2 ,t !ln P~x2 ,t !, ~12!

whereS1 is the relative entropy@4#, namely, the entropy o
the fast variablex1, averaged over the quenched slow va
e

r-

s
o

-

ablex2, andS2 is the entropy of the slow variable itself. Thi
general result of the statistical thermodynamics can again
applied in previous case whereP(x1 ,x2 ,t)5P0(x1 ,x2).
Now we define the free energy of the two-temperature s
ation,F52T2ln Z,

F5U2T1S12T2S2 . ~13!

The entropiesS1 ,S2 can be obtained as partial derivatives
F,

]F

]T1
U

T2

52S1 ,
]F

]T2
U

T1

52S2 . ~14!

Equation~13! agrees with the expression of the free ener
for a glassy system put forward previously by one of u
analyzing solvable models@9,10#. In that approach the
equivalent ofT2 is the dynamically generated effective tem
perature, while here it is the temperature of a bath. A sim
two-temperature steady state approach occurred rece
when we analyzed the so-calledp-spin model@11#.

The free energy~13! has several essential properties of
equilibrium companion. Leta be some parameter of th
Hamiltonian, which is varying externally according to
given trajectorya(t). The change of the mean energy~10!
will consist of two terms,

dU5E dx1dx2@P~x1 ,x2 ,t !dH„x1 ,x2 ,a~ t !…

1H„x1 ,x2 ,a~ t !…dP~x1 ,x2 ,t !#, ~15!

where P(x1 ,x2 ,t) is the corresponding solution of th
Fokker-Planck equation~2!. The first term in Eq.~15! is due
to the Hamiltonian, which is essentially a mechanistic, no
statistical object; thus it is associated with the workd”W pro-
duced by external sources@1,2#. The second term represen
the variation due to the statistical redistribution of the co
figurational space, and is identified with a heatd”Q. The first
law can be written as usual:

dU5d”W1d”Q. ~16!

Now the characteristic timeT of this variation is assumed to
be much larger than the maximal relaxation timeG2. As
usual, this means that the variation is done by an exte
macroscopic source@1,2#. Further, we shall consider the iso
thermal variation, namely, both temperaturesT1 ,T2 are
fixed. The variation starts at the initial timet i , and is fin-
ished att5t f . Both these times are also assumed larger t
G2, such that the variation starts when the system is alre
in the steady state. In the zero order ofG2 /T the time-
dependent distribution will beP0„x1 ,x2 ,a(t)…, namely, the
steady-state distribution, wherea(t) is substituted. This is
clear from Eq.~2!, where for the slow variation one ca
neglect the left-hand system. Now it can be shown direc
that

dW5dF. ~17!

Thus, the free energy~13! determines the isothermal wor
done by external sources, when the parameter changes
slowly.
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Using Eq.~16! we shall obtain for the heat

dQ5T1dS11T2dS2 . ~18!

Results similar to Eq.~18! were obtained in investigating
solvable glassy systems@9# and noisy electrical circuits@12#.

Dissipative effects due to a nonoptimal variation of t
parameter can be naturally incorporated into the prese
scheme. As a simple but illustrative example, let us assu
that T is still much larger thanG2, but remains finite. The
first correction to the distribution functionP(x1 ,x2 ,t) will
arise due to the deviation ofx2 from its locally stable distri-
bution P0„x2 ,a(t)…, while the fast degree will still be de
scribed byP0„x1ux2 ,a(t)…. For simplicity we shall assume
‘‘smooth’’ protocol of variation, whereȧ(t i)50.

Starting from Eq.~7! one can show by direct substitutio
that the corrected distribution function will be

P~x1 ,x2 ,t !5P~x2 ,t !P0„x1ux2 ,a~ t !…

5P0„x1 ,x2 ,a~ t !…@11G2b2B~x2 ,t !2^B&0#,

~19!

where^•••&0 means averaging byP0„x1 ,x2 ,a(t)…, and

B~x2 ,t !5E
2`

x2 dy

P0„x2 ,a~ t !…E2`

y

dz] tP0„z,a~ t !…. ~20!

Since

] tP0„z,a~ t !…52ȧ~ t !P0„z,a~ t !…@]aHe„z,a~ t !…2^]aHe&0#,
~21!

the correction in Eq.~19! contains the small prefacto
ȧ(t)G2, which controls the slow, but not too slow, variatio
of a. Distribution ~19! satisfies the initial condition
P(x1 ,x2 ,t i)5P0„x1 ,x2 ,a(t i)…, sinceȧ(t i)50.

We shall collect Eqs.~19!–~21! and the definition of
work, use the fact that

]aHe~x2 ,a!5E dx1P0~x1ux2!]aH~x1 ,x2 ,a!, ~22!

which follows directly from Eq.~5!, and get after integration
by parts the following expression for the workDW done,
when varying the parametera from the initial timet i to the
final time t f :

DW5DF1DF, ~23!

DF5
G2

T2
2Et i

t f
dt ȧ2~ t !E dx

P0„x,a~ t !… S Ex

`

dy P0„y,a~ t !…

3@]aHe„y,a~ t !…2^]aHe&0# D 2

>0. ~24!

DF5F„a(t f)…2F„a(t i)… is the difference between free en
ergies, which determines the purely adiabatic contribution
the work, andDF is the corresponding nonadiabatic pa
which is positive, and should be identified with the ener
ed
e

o
,
y

dissipated due to nonoptimal variation of the parameter. N
tice in this context thatDF depends on the whole trajector
a(t), in contrast toDF.

Now Eq. ~18! can be written in the form of the genera
ized Clausius inequality

T1dS11T2dS22d”Q5d”F>0. ~25!

Equations~13!, ~14!, ~17!, ~18!, ~23!, and ~25! are manifes-
tations of the generalized thermodynamics of the ste
adiabatic state.

Variational principle

As is well known, variational principles play an importa
role in thermodynamics, since they provide general meth
of derivation of the corresponding stationary probability d
tributions. Indeed, they can be usedindependentlyon the
underlying dynamics, when no detailed information conce
ing the dynamics is available@1–5#.

Let us indicate how distribution~9! can be obtained from
a more general consideration. The usual Gibbs distribu
for homogeneous equilibrium states can be obtained ei
from maximizing the entropy, keeping the energy fixed,
from minimizing the energy, keeping the entropy fixed. F
the steady adiabatic state, which is nonhomogeneous and
of equilibrium, one can minimize the mean energy, keep
both entropiesS1 and S2 fixed. Following the standard
method we should minimize the Lagrange function

L5E dx1dx2P~x1 ,x2!H1T2E dx2P~x2!ln P~x2!

1T1E dx2P~x2!E dx1P~x1ux2!ln P~x1ux2!, ~26!

whereT1 andT2 are Lagrange multipliers and normalize th
solutions. In doing the minimization with respect toP(x2)
andP(x1ux2), we now recover Eqs.~4! and~8!, but this time
on the basis of a more general variational principle. In co
trast to the usual equilibrium~or weakly nonequilibrium!
situation, it is impossible now to interchange the roles
entropy and energy.

For T15” T2 this principle will be the direct consequenc
of the equilibrium variational principleonly in the trivial
case when the coupling betweenx1 andx2 is negligible, and
the average energy is the sum of two partial energiesU
5U11U2.

III. ENTROPY PRODUCTION AND ENERGY
DISSIPATION IN THE STEADY STATE

In the previous section we studied thermodynamic re
tions when a parameter is varied by external sources. T
section is devoted to dissipative characteristics, which
inherently present in the system due to the difference
tween temperaturesT1 andT2.

The different temperatures at the steady state lead
constant heat current through the system. This implies a c
stant production of entropy and a dissipation of energy.
investigate these effects taking into account possibleg cor-
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rections. The stationary probability distribution can be e
pressed as

P1~x1 ,x2!5P0~x1 ,x2!@12gA~x1 ,x2!#1O~g2!. ~27!

The boundary conditions are, as usual, thatP(x1 ,x2) and its
derivatives vanish at infinity.A(x1 ,x2) is obtained from the
stationarity condition] tP(x1 ,x2 ,t)50, taking into account
the orthogonality condition*dx1dx2AP050 and consis-
tency with O(g2) terms. The general expression forA is
rather lengthy, but for a concrete model it is given in E
~41! below. The steady currents~3! are given by

J1~x1 ,x2!5
T1

G2
P0~x1 ,x2!]1A~x1 ,x2!, ~28!

J2~x1 ,x2!5
T12T2

T1G2
P0~x1 ,x2!dF2~x1 ,x2!. ~29!

Notice that forJ2 the objectA is not needed, but only

dF2~x1 ,x2!52]2H~x1 ,x2!1E dy P0~yux2!]2H~y,x2!,

~30!

which is the difference between the force acting on the s
ond subsystem and its conventional mean value obtaine
averaging over the fast degree of freedom. Therefore som
the further results can be derived without knowledge ofA,
although it is needed for consistency checks andg correc-
tions.

The change of the total entropy reads

d”Stot5dS1d”Sb,11d”Sb,25dS2b1d” 1Q2b2d” 2Q, ~31!

whereS5S11S2 is the entropy of the system defined by E
~12!, Sb,1 ,Sb,2 are the entropies of the corresponding therm
baths, andd” 1Q,d” 2Q are the amounts of heat obtained by t
system from the thermal baths. Conservation of ene
means that

d” iQ52d”Qb,i52Tid”Sb,i , ~32!

where the second equality holds because the baths a
equilibrium. The flow of heat from bathi,

Q̇i[
d” iQ

dt
52E dx1dx2H~x1 ,x2!] iJi~x1 ,x2 ,t !, ~33!

can be obtained from Eq.~2!. The entropy and the mea
energy of the stationary state are constant:Ṡ50,Q̇11Q̇2
50. Nevertheless, there exists a constant-rate entropy
duction in the outside world~the thermal baths!,

Ṡtot5~b12b2!Q̇2 . ~34!

Energy dissipation in the steady state can be defined as
sum of energies dissipated under the influence of the ba

Ṗ5(
i 51

2 S Ti

d” iS

dt
2

d” iQ

dt D . ~35!
-

.

c-
by
of

.
l

y

in

o-

he
s:

Recall thatd” iQ of Eq. ~33! is the heat obtained from th
thermal bathi, and d” iS, defined similarly withH(x1 ,x2)
→2 ln P(x1,x2), is the change of entropy induced by th
bath. For the adiabatic system considered this definition
be shown to have a more intuitive meaning. Starting fro
Eqs. ~2! and ~13!, using Eq. ~33! and also Ṡ1

52* Ṗ(1,2)lnP(1u2),Ṡ252*Ṗ(1,2)lnP(2), we obtain

Ḟ~ t !5~T12T2!E dx1dx2J2~x1 ,x2 ,t !]2ln P~x1ux2 ,t !

2E dx1dx2P~x1 ,x2 ,t !(
i 51

2
1

G i
@] iH~x1 ,x2!

1Ti] i ln P~x1 ,x2 ,t !#2. ~36!

We may write this asḞ5Ẇss2Ṗ, whereṖ>0 is the energy
dissipation defined in Eq.~35!, and Ẇss can be associated
with the work done to keep the system in the nonequilibriu
state. In the stationary state one hasḞ50, and the work
performed must be equal to the dissipated energy.

Using Eqs.~28! and~30! we get after some algebra for th
entropy production and energy dissipation at the steady s

Ṡtot5g
k2

T2G1
^~dF2!2&11g2

k

G1
^dF2 ]2A&0 ,

Ṗ5g
k2

G1
^~dF2!2&11g2

k~2T22T1!

G1
^dF2]2A&0 , ~37!

wherek5(T12T2)/T1, and^•••&0(1) means averaging ove
the distributionP0(1) . We observe the relation

Ṗ5T2Ṡtot1O~g2! ~38!

valid to leading order ing. For the usual nonstationary sys
tem tending to equilibrium one has the relationṖ5TṠtot
between entropy production and energy dissipation, wheT
is the temperature of the unique thermal bath. On the o
hand, Eq.~38! reflects degradation of energy in the stationa
state. This equation also shows that whenT2 is close to zero,
the energy dissipation~but not the entropy production! loses
its leading term. Apparently this means that energy dissi
tion, in contrast to entropy production, is closely related
the fluctuations of slow degree that are controlled byT2.

Let us apply the general results obtained to a sim
model. We consider a pair of weakly interacting oscillato
with coordinatesx1 ,x2 and HamiltonianH5 1

2 ax1
21 1

2 ax2
2

1gx1
2x2

2, wherea.0,g.0. Very similar models are applied
to describe an oscillator with random frequency@7# or some
electrical circuits@4#. For simplicity we shall discuss the
model keeping only the first nonvanishing order in the sm
parameterg. The stationary distribution has the form~27!,
with

P0~x1ux2!5Ab1a

2p
e2b1x1

2/2S 12gb1x1
2x2

21g
x2

2

a D ,

~39!
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P0~x2!5Ab2a

2p
e2b2x2

2/2S 12g
T1b2x2

2

a
1g

T1

a2D ~40!

A5
g~T12T2!

a2
~12ab2x2

2!~12ab1x1
2!. ~41!

After some calculations we get from Eqs.~28! and ~37!

Ṡtot5
8g2

a3G1

~T12T2!2~g2g2!, ~42!

Ṗ5
8g2

a3G1

~T12T2!2@gT21g2~T122T2!#. ~43!

IV. BREAKDOWN OF ONSAGER RELATIONS

The results obtained allow us finally to discuss the O
sager relations concerning heat transfer. These fundam
and experimentally testable relations were proposed by
sager to describe transport in weakly nonequilibrium syste
~the linear case! @4,13#. Later they were generalized to th
nonlinear regime. Following standard arguments@4,13# the
Onsager relation reads in our case

]b1
Q̇25]b2

Q̇1 , ~44!

whereQ̇i , given by Eqs.~33! and~34! is the heat flux from
the thermal bathi. In the stationary case one hasQ̇11Q̇2

50. For our model we use~34! to expressQ̇2 throughṠtot ,
and obtain from Eq.~42!

Q̇25
8gg2

a3G1

b12b2

b1
2b2

2
1O~g2!. ~45!

The linear case corresponds to Eq.~44! with b1'b2. Indeed,
then the fluxes can be written in more familiar form as

Q̇i5(
j

L i j Db j , ~46!

whereDb i5b i2b0 is a small deviation of the inverse tem
peratureb i from its equilibrium valueb0, and theLi j depend
only on b0 but not onb1,2 separately. In that case the rel
tion ~44! takes the formL125L21 (58gg2T0

4/a3G1 in our
model!. This form of the Onsager relations is applicab
mainly for the linear case@4,13#, in contrast to the more
general relation~44!.

One of the arguments leading to Eq.~44! is anassumption
about the existence of a dissipative potentialF(b1 ,b2),
which generates heat currents

Q̇15]b1
F, Q̇25]b2

F. ~47!

Then Eq.~44! follows as a simple consequence. As is w
known, dissipative potential exists in the linear regime, a
coincides there with entropy production@1–5#. Since the va-
lidity of Eq. ~44! in the linear regime is a fundamental the
rem connected with the time-inversion invariance of t
-
tal
n-
s

l
d

equilibrium state@4,2,3#, any breaking of Eq.~44! can be
connected only withT15” T2. The converse is not true: ther
are physically important cases where the Onsager relat
hold out of equilibrium@4,13#. In particular, in Ref.@14# it
was shown that for a special class of nonequilibrium syste
the time-inversion invariance can be broken, but Onsa
relations are still valid due to an additional symmetry. Th
checking these relations for our concrete class of nonequ
rium systems seems important. From Eqs.~34! and~37!, and
using Q̇152Q̇2, we obtain in the general situation to lea
ing order ing

]b1
Q̇22]b2

Q̇15g T2

b12b2

G1
$]b1

1]b2
%^~dF2!2&,

~48!

In the linear regime withb1'b2 the Onsager relation is thu
satisfied. However, for the considered system that is the
ceptional case, and~44! cannot be true in general. Indeed, f
our model we get

]b1
Q̇22]b2

Q̇15g
16g2

a3G1

T1T2~T1
22T2

2!. ~49!

implying a violation of the Onsager relation for anyT1
ÞT2, because, due to Eq.~45!, the right-hand side of Eq
~49! has the same order of magnitude as the individual te
in the left-hand side. In this sense the violation is strong.
general, if Eq.~44! were to be valid, Eq.~48! says that we
should havê (dF2)2&5b2f (b12b2) for all b1 ,b2, wheref
is some positive function. This cannot hold, since on tak
the limit b2→0 one obtains zero on the right-hand sid
while the left-hand side typically diverges, or at least sta
finite and nonzero, including nontypical cases. Thus, the O
sager relations are broken for the class of nonequilibri
systems considered.

V. DISCUSSION

We have considered a class of stochastic systems w
two subsystems have well-separated time scales, and int
with different thermal baths. In addition to its direct physic
interest, our approach can have certain interesting analo
with glasses, which we wish to suggest for further consid
ation.

Glasses are weakly time-dependent nonequilibrium s
tems@15#, and when cooling at a proper rate~varying from
1022 K/s for window glass to 105 K/s for metallic glasses
and 1011K/s for computer glasses! relaxation times become
very large near the experimentally defined glassy temp
ture Tg . The metastable state thus reached slowly
proaches equilibrium. For a certain class of systems, nam
those having degrees of freedom with two well-separa
characteristic times, the nonequilibrium state can be
scribed by assigning different temperatures~so-called effec-
tive or fictive temperatures! @15,16,9,10#. In a certain time
window these two-temperature models allow a quasist
description in which the slow modes appear to be couple
a real heat bath at the present fictive temperature. Indeed
time scales of the order of the characteristic timetobs the
fictive temperature remains constant. A typical decay is
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the form 1/ln(tobs/t1) @9#; in the long time regimetobs@t1,
this hardly changes for times that are large but still of
order of tobs. The generalized thermodynamics presented
us in Sec. II has clear analogies with glassy thermodynam
@10,9#. In spite of the fact that the second temperature is
self-generated by the system, but is introduced by the
thermal bath, one can expect that manythermodynamicrela-
tions do not depend on the concrete process that gene
this temperature. Further steps in this direction were mad
Refs. @11,17#, where this analogy was investigated in t
context of fluctuation-dissipation relations and respo
functions.

To conclude, we shall briefly reiterate the main results
the present paper. We consider a class of steady systems
fast and slow processes coupled to two heat baths at a
ferent temperature. The situation is far from equilibrium, b
s

-

s
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cs
t
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tes
in

e

f
ith
if-
t

it nevertheless allows a thermodynamic description. T
generalized thermodynamics can be obtained by minim
tion of the energy, keeping all entropies fixed. Universal
lations, Eqs.~37! and ~38!, are obtained between entrop
production and energy dissipation. Energy dissipation~in
contrast to entropy production! loses its leading term when
the temperature of the bath with the slow degrees of freed
goes to zero. Finally, we show that the nonlinear Onsa
relation for heat transfer in the steady adiabatic state is
ways broken, reflecting the system’s strongly nonequilibriu
character. As the effect is of order unity, it can be testa
experimentally.
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