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Steady adiabatic state: Its thermodynamics, entropy production, energy dissipation, and violation
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A class of statistical systems is considered where different degrees of freedom have well-separated charac-
teristic times, and are described by different temperatures. The stationary state is a nonequilibrium state with
a heat flow. A generalized statistical thermodynamics is constructed and a universal variational principle is
proposed. Entropy production and energy dissipation occur at a constant rate. To leading order in the small
ratio of the characteristic times, there exists a universal relation between them. Onsager relations in the context
of heat transfer are also considered. They are always broken, except close to equilibrium.

PACS numbgs): 64.70.Pf, 05.70.Ln, 75.10.Nr, 75.40.Cx

I. INTRODUCTION Il. THE MODEL AND ITS THERMODYNAMICS

To underline our conclusions, let us introduce a pair of
Statistical thermodynamics is a powerful theory for de-coupled stochastic variables,,x, having Hamiltonian
scribing equilibrium statefsl,2]. Due to the general character H(Xy,Xz), which interact with different thermal baths at dif-
of the Gibbs distribution, thermodynamics produces univerferent characteristic time scales. The Langevin equations
sal relations, which apply independently of the detailed beread
havior. It has been generalized to weakly nonequilibrium

states in an approach first started by Onsager, and further Tixi=—aH(x1, %)+ () (i,j=1,2),
developed extensivelysee, e.g.[1-5]). In this paper we
propose a thermodynamical description for a class of situa- (mi(1) (1)) =21T; 5 8(t—t'), (1)

tions far from equilibrium: the steady adiabatic state. Having )
a stationary distribution far from Gibbsian, these systemd'herel's,I'; are the damping constants, afe- /9 . The
possess widely separated characteristic tifagiiabaticity ~ E/NStein relation between the strength of noise and the damp-

that appear enough to deduce a thermodynamical descri%ﬁgrr?gerz}?/imarhemgsssg;nelzg(tlg, bbee?r?uesqeuiltirll?i[JtrTA{r%alT?]Zths

tion. :

A frequently encountered generalization of the usual equi!:()kker'PIaan equation that corresponds to Efjsreads
librium is a system interacting with different thermal baths at 2
constant temperatur¢§_]_. I_n the infinite-time I|_m|t the sys- 3tP(X1,X2;t)+E 0:d: (X1, %p:1) =0, )
tem goes to a nonequilibrium steady state with heat currents i=1

between the baths. In contrast to the Gibbs distribution, the
steady state depends on the underlying time scales, and still
contains information about the dynamics. Therefore, we call
it the steady adiabatic stat@he system has been studied as
one of the minimal models having easily controlled nonequi-where P(x4,X,;t) is the probability distribution, and;,J,
librium properties[6]. The conceptual and technical advan- are the currents of probability.
tages of this approach were stressed, in particular, by Meix- We shall assume that, is changing much more slowly
ner[5]. thanxy; this is ensured by the conditiop=1";/I',<1. Let
Our investigation focuses on the large separation betweeis first indicate how the stationary distribution can be ob-
the characteristic times. On the other hand, we shall speciffgined to ordery?; this will give us the basic formulation of
neither the Hamiltonian of the system, nor the differencethe generalized thermodynamics. Equati@hscan be inves-
between temperatures. In that sense the results will be unfigated by the method of adiabatic eliminatir] (Born-
versal. Oppenheimer methgdFirst Eq.(1) for x; is solved keeping

Our purposes are the followingi) To derive the steady thex, fixed, which is valid on the relatively short time scales

statistical distribution and the corresponding thermodynamhere only Eq(1) for x, is relevant. In this limit the Lange-

ics; (i) to propose a general variational principle for this \{in equation fori=1 has the obvious equilibrium distribu-
thermodynamicsiiii ) to investigate the important dissipative

characteristics, such as entropy production and energy dissi- 1

pation, in the steady state; afid) to show the breakdown of Po(Xq|Xp) = 2_qu — B1H(X1,%2)], (4)
the nonequilibriumOnsager relations for heat transfer. (X2)

1 T;
Ji=— FP(lexzit)aiH(lexz)_ ﬁaip(xl,xz§t), (3
I I
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whereZ(x5) is the partition sum for a fixed value a&h. At  ablex,, andS, is the entropy of the slow variable itself. This
quasiequilibrium of thex, subsystem this average should be general result of the statistical thermodynamics can again be
performed using the distributio@). In this way we get from applied in previous case wherB(x;,Xs,t)=Pg(X1,X5).

Egs. (1) a related dynamics for the slow variable, in which Now we define the free energy of the two-temperature situ-
the two particle HamiltoniarH(x;,x,) is replaced by the ation,F=-T,ln Z,

effective one-particle HamiltoniaH ¢(x,),

F=U-T,5-T,S,. (13
He(X2) =—=T1INZ(Xxy). 6) ) . . R
The entropiess;,S, can be obtained as partial derivatives of
We thus have the effective equation of motion F,
P Xo= T3 N Z(0) + 75(0) (6) s i S (14)
Xo=—""— n X y R = — , _ _— .
2X2 9%, 1 2) T 72 aT, . il aT, .

and the corresponding Fokker-Planck equation Equation(13) agrees with the expression of the free energy

for a glassy system put forward previously by one of us,
analyzing solvable model$9,10]. In that approach the

1
P(Xz,1)= F—Zaz[P(Xz 1) daHe(X2) + T2d,P(X5,1) ]
(7)

As the noise is due to a bath at temperafliydsee Eq(1)],
the equilibrium distribution of this process reads

T IT
Po(Xz):ZlTZ(Xz), Z:j dx,2"T2(x,).  (8)

The joint distribution ofx; andx, can now be written as

Po(X1,X2) = Po(Xq|X2) Po(X2). 9

equivalent ofT, is the dynamically generated effective tem-
perature, while here it is the temperature of a bath. A similar
two-temperature steady state approach occurred recently
when we analyzed the so-callgespin model[11].

The free energyl3) has several essential properties of its
equilibrium companion. Letw be some parameter of the
Hamiltonian, which is varying externally according to a
given trajectorya(t). The change of the mean energho)
will consist of two terms,

dU: f dxldX2[P(X1,X2,t)d H(Xl,Xz,a'(t))

Let us stress that this steady state is not Gibbsian. It will be

so if the coupling betweer,; andx, is weak; then the state
(9) will be the product of two separate Gibbsian distributions

at the temperature¥,; and T,. On the other hand, i,

=T, one obtains from Eq9) the usual Gibbs distribution. A
similar approach is applied in spin glasses and other diso
dered systems where=T, /T, is considered as a “dynami-

cally generated” replica numbé8].

If the state of a system is described by a distribution
P(X1,X5,t)=P(X4|X5,1)P(X5,1), then there are general defi-

nitions for the mean energy and entropgy:

U:f dxldXZP(Xl,Xz,t)H(Xl,Xz), (10)

Sz_f XmdXZP(Xl,X2,t)In P(Xl,XZ,t). (11)

r-

+H(Xq,Xy, a(t))dP(X1,X5,t)], (15

where P(x4,X5,t) is the corresponding solution of the
Fokker-Planck equatio(®). The first term in Eq(15) is due

to the Hamiltonian, which is essentially a mechanistic, non-
statistical object; thus it is associated with the wdkl pro-
duced by external sourc¢s,2]. The second term represents
the variation due to the statistical redistribution of the con-
figurational space, and is identified with a hd&. The first
law can be written as usual:

dU=dw+dQ. (16)

Now the characteristic tim& of this variation is assumed to
be much larger than the maximal relaxation tiffig. As
usual, this means that the variation is done by an external
macroscopic sourdel,2]. Further, we shall consider the iso-
thermal variation, namely, both temperaturés,T, are

This latter Boltzmann-Gibbs-Shannon formula correspondsixed. The variation starts at the initial tinte, and is fin-

to the general statistical definition of entropy, relevant alsqshed att=t;. Both these times are also assumed larger than
outside of equilibriun{4]. The total entropy can be decom- 1, such that the variation starts when the system is already

posed as

S:Sl+82,

Sl=f dx, P(xz,t)(—f dx; P(Xq|X2,1)In P(Xq]X2,t) |,

SZ=—j dX,P(X5,t)In P(x,,t), (12

in the steady state. In the zero order I6§/7 the time-
dependent distribution will b&,(x;,X,,a(t)), namely, the
steady-state distribution, whewe(t) is substituted. This is
clear from Eq.(2), where for the slow variation one can
neglect the left-hand system. Now it can be shown directly
that

dw=dF. (17)

Thus, the free energyl3) determines the isothermal work

whereS; is therelative entropy[4], namely, the entropy of done by external sources, when the parameter changes very
the fast variablex;, averaged over the quenched slow vari- slowly.
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Using Eq.(16) we shall obtain for the heat dissipated due to nonoptimal variation of the parameter. No-
tice in this context thaA ® depends on the whole trajectory
dQ=T,dS+T,dS;. (18 a(t), in contrast toAF.

o _ o o Now Eq. (18) can be written in the form of the general-
Results similar to Eq(18) were obtained in investigating jzed Clausius inequality

solvable glassy systemi8] and noisy electrical circuitsl2].
Dissipative effects due to a nonoptimal variation of the T.dS +T-dS,—dO=dd=0 25
parameter can be naturally incorporated into the presented 105+ T,05-dQ ' @9

scheme. As a simple but illustrative example, let us assumgquations(m) (14), (17, (18), (23), and (25) are manifes-

that 7 is still much larger thal’,, but remains finite. The tat £ th lized th d K f the stead
first correction to the distribution functioR(x;,X,,t) will gj:gg;tig statee generalize ermodynamics ot the steady

arise due to the deviation af from its locally stable distri-
bution Py(x,,a(t)), while the fast degree will still be de-

scribed byPy(X4| X5, a(t)). For simplicity we shall assume a Variational principle
“smooth” protocol of variation, wherex(t;) =0. As is well known, variational principles play an important
Starting from Eq(7) one can show by direct substitution role in thermodynamics, since they provide general methods
that the corrected distribution function will be of derivation of the corresponding stationary probability dis-
tributions. Indeed, they can be uséiependentlyon the
P(X1,X2,t) =P (X2, ) Po(Xq|Xz, (1)) underlying dynamics, when no detailed information concern-

_ _ ing the dynamics is availabld—5].
=Po(X1,X2,@(t))[1+T28,B(X2,t) —(B)ol, Let us indicate how distributiofd) can be obtained from
(19 a more general consideration. The usual Gibbs distribution
) for homogeneous equilibrium states can be obtained either
where(- - - ) means averaging biPo(x;,X,,«(t)), and from maximizing the entropy, keeping the energy fixed, or
) from minimizing the energy, keeping the entropy fixed. For
N y y the steady adiabatic state, which is nonhomogeneous and out
Blxz,t)= JWPO(xz,a(t))fde(?‘PO(Z’a(t))' 20 of equilibrium, one can minimize the mean energy, keeping
both entropiesS; and S, fixed. Following the standard

Since method we should minimize the Lagrange function
&tPo(z,a(t))=—iv(t)F’o(z,a(t))[ﬂaHe(z,a(t))—<8aHe(>§]l3 g:f dx,dX,P(Xq,Xo)H +T2f dx,P(x2)In P(x5)
the correction in Eq.(19) contains the small prefactor +-|-1J dsz(Xz)f dx, P(X1|X2)IN P(X1]%5), (26)

a(t)T',, which controls the slow, but not too slow, variation
of «a. Distribution (19) satisfies the initial condition
P(X1,X2,1;) = Po(Xy, Xz, a(t;)), sincea(t;)=0.

We shall collect Eqs(19—(21) and the definition of
work, use the fact that

whereT, andT, are Lagrange multipliers and normalize the

solutions. In doing the minimization with respect R{x,)

andP(x4|x,), we now recover Eq$4) and(8), but this time

on the basis of a more general variational principle. In con-

trast to the usual equilibriungor weakly nonequilibrium

aaHe(xz,a)zf dx;Po(X1]X2)d H(X1 X0, @), (22)  situation, it is impossible now to interchange the roles of
entropy and energy.

For T,+# T, this principle will be the direct consequence
of the equilibrium variational principlenly in the trivial
case when the coupling betwerpandx, is negligible, and
the average energy is the sum of two partial enerdigs:

which follows directly from Eq(5), and get after integration
by parts the following expression for the wokW done,
when varying the parameter from the initial timet; to the

final time t;:
f :U1+ Uz.
AW=AF+A®, (23
IIl. ENTROPY PRODUCTION AND ENERGY
Lyt . 5 dx % DISSIPATION IN THE STEADY STATE
Ad)z—f dtatf—Jd Po(y,a(t))
T§ t; ® Po(X,a(t))( x Y Poly,a(t In the previous section we studied thermodynamic rela-
) tions when a parameter is varied by external sources. This
X[ H.(y,a(t)— (o H ~0. 24 section is devoted to dissipative characteristics, which are
[9aHey, (D)= (7 e>°]) 24 inherently present in the system due to the difference be-

tween temperatureg; andT,.
AF=F(a(t;))—F(a(t;)) is the difference between free en-  The different temperatures at the steady state lead to a
ergies, which determines the purely adiabatic contribution t@onstant heat current through the system. This implies a con-
the work, andA® is the corresponding nonadiabatic part, stant production of entropy and a dissipation of energy. We
which is positive, and should be identified with the energyinvestigate these effects taking into account possjbtor-
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rections. The stationary probability distribution can be ex-Recall thatd,Q of Eq. (33) is the heat obtained from the
pressed as thermal bathi, and d;S, defined similarly withH(xq,X,)
——InP(xy,Xy), is the change of entropy induced by this
P1(X1,X2) =Po(X1,X)[ 1= yA(X1,X) [+ O(¥%). (27)  bath. For the adiabatic system considered this definition can
be shown to have a more intuitive meaning. Starting from
Egs. (2) and (13), using Eqg. (33) and also Sl
=—[P(1,2)InP(1]2),S=—fP(1,2)InP(2), we obtain

The boundary conditions are, as usual, thét,,x,) and its
derivatives vanish at infinityA(x4,X,) is obtained from the
stationarity conditiond;P(x;,x5,t)=0, taking into account
the orthogonality conditionf/dx;dx,AP,=0 and consis-
tency with O(y?) terms. The general expression faris F(t):(Tl_TZ)f A AXod5(Xq Xz, 1) 3oIn P(Xq|X,1)
rather lengthy, but for a concrete model it is given in Eq.

(41) below. The steady current8) are given by

21
T _f dxldXzP(Xl,Xz,t)iEl F[aiH(XerZ)
= i
Ji(X1,X0) = F_PO(XlaXZ)alA(XlaXZ)v (28
2 +T0; In P(xq,%5,1) ]2 (36)
T,—Tp R : : .
Jo(Xq,X9) = EN Po(X1,X2) 0F 5(X1,X5). (299  We may write this a& = Wys—I1, wherell =0 is the energy
e dissipation defined in Eq.35), and W, can be associated
Notice that forJ, the objectA is not needed, but only with the work done to keep the system in the nonequilibrium
state. In the stationary state one Has-0, and the work
_ performed must be equal to the dissipated energy.
OF 5(X1,Xp) = — daoH (X1, %) + f dy Po(y[x2) d2H(Y,%2), Using Egs(28) and(30) we get after some algebra for the
(30 entropy production and energy dissipation at the steady state

which is the difference between the force acting on the sec- . 2 K
ond subsystem and its conventional mean value obtained by Siot= 7W<(6F2)2>1+ yzr—<5F2 d2A)q,

i 2t 1 1
averaging over the fast degree of freedom. Therefore some of
the further results can be derived without knowledgeApf ) (2T,—Ty)

it H ~ . K K 27— 11
a_llthough it is needed for consistency checks andorrec 1= y—((6F5)2); + 2 (8F,0,A)0, (37)
tions. Iy ry
The change of the total entropy reads
wherex=(T,—T,)/Ty, and(- - -)o(;) means averaging over
dSi01=dS+dS, 1+ dS, ,=dS— 14:Q— B28,Q, (31)  the distributionPy;y. We observe the relation

whereS= S, + S, is the entropy of the system defined by Eq.
(12), Sy 1,5y 2 are the entropies of the corresponding thermal
baths, andl;Q,d,Q are the amounts of heat obtained by the ) ) )
system from the thermal baths. Conservation of energ;}’a“d to leading order iny. For the usual nonstaqonar_y Sys-
means that tem tending to equilibrium one has the relatibh=T S,
between entropy production and energy dissipation, wiiere
diQ=-dQ,;=—-TdS,;, (32 is the temperature of the unique thermal bath. On the other
hand, Eq(38) reflects degradation of energy in the stationary
where the second equality holds because the baths are #tate. This equation also shows that wieris close to zero,
equilibrium. The flow of heat from bath the energy dissipatiotbut not the entropy productidioses
40 its leading term. Apparently this means that energy dissipa-
S b tion, in contrast to entropy production, is closely related to
Q= = fdxldsz(Xl’XZ)ﬁiJi(Xl’Xz’t)’ (33 the fluctuations of slow degree that are controlledThy
Let us apply the general results obtained to a simple
can be obtained from Eq2). The entropy and the mean model. We consider a pair of weakly interacting oscillators
energy of the stationary state are const®t0,Q,+Q, Wwith coordinatesx;,x, and HamiltonianH = }ax{+ zax;
=0. Nevertheless, there exists a constant-rate entropy pror gxix%, wherea>0,9>0. Very similar models are applied

I1=T,S;i+O(¥?) (39)

duction in the outside worldthe thermal baths to describe an oscillator with random frequer@y or some
_ _ electrical circuits[4]. For simplicity we shall discuss the
Siot=(B1—B2) Q3. (349  model keeping only the first nonvanishing order in the small

parameterg. The stationary distribution has the for(@7),
Energy dissipation in the steady state can be defined as theith
sum of energies dissipated under the influence of the baths:

ﬁla 2 Xg

2 _ N P 2,2, X2

. 4SS d Po(Xq]xp)= e P (1 9B XXzt g — |,

=2, (Tiﬁ‘é—?)- 35 o e
=1

(39
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T,.8,x3 T
Po(X2)= 1/ %G’%Xgm( 1‘9%*’9&1—; (40)
T
A= 9£—1;———l<1 aB3)(1-aBpd). (41

After some calculations we get from Eq28) and(37)

2

. 89
Sor=— (T1—T2)*(y— ), (42)
a’l'y
. 8¢? , 5
= 2T (Ti=T)LyToty(T1—2Tx)]. (43
1

IV. BREAKDOWN OF ONSAGER RELATIONS
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equilibrium state[4,2,3], any breaking of Eq(44) can be
connected only witil'; # T,. The converse is not true: there
are physically important cases where the Onsager relations
hold out of equilibrium[4,13]. In particular, in Ref[14] it

was shown that for a special class of nonequilibrium systems
the time-inversion invariance can be broken, but Onsager
relations are still valid due to an additional symmetry. Thus
checking these relations for our concrete class of nonequilib-
rium systems seems important. From E@gl) and(37), and

usingQ;=—Q,, we obtain in the general situation to lead-
ing order iny

Ble 19/32Q1 7T2,8_ {95, + 9p,}{(6F2)?),
(48)

In the linear regime witlB,~ B, the Onsager relation is thus
satisfied. However, for the considered system that is the ex-

The results obtained allow us finally to discuss the On-Ceptional case, an@d4) cannot be true in general. Indeed, for
sager relations concerning heat transfer. These fundamentr model we get
and experimentally testable relations were proposed by On-

sager to describe transport in weakly nonequilibrium systems
(the linear case[4,13]. Later they were generalized to the

nonlinear regime. Following standard argumesl3] the
Onsager relation reads in our case

331(?2: aﬁle ; (44)
whereQ;, given by Eqs(33) and(34) is the heat flux from
the thermal bath. In the stationary case one h&s+Q,

=0. For our model we us€d4) to expresxQ, throughS,;,
and obtain from Eq(42)

. 8yg® B1— B
Qo= 52+ 0(). (45)
a’l'y 3132
The linear case corresponds to B44) with 8,~ 3,. Indeed,

then the fluxes can be written in more familiar form as
Q=;Lﬂm, (46)

whereAB;=Bi—
peratureg; from its equilibrium values,, and thelL;; depend

only on B, but not onp, , separately. In that case the rela-

tion (44) takes the formlL,,=L,; (=8yg?Ty/a’T; in our

Bo is a small deviation of the inverse tem-

2

95Q,—305.Q1= ﬁTT(Tz—Tz) (49)
B N27 0,1 7a3F112 1~ 12)-

implying a violation of the Onsager relation for anl;
#T,, because, due to E@45), the right-hand side of Eq.
(49) has the same order of magnitude as the individual terms
in the left-hand side. In this sense the violation is strong. In
general, if Eq.(44) were to be valid, Eq(48) says that we
should have (5F,)?) = B,f(81— B,) for all 81,85, wheref

is some positive function. This cannot hold, since on taking
the limit B,—0 one obtains zero on the right-hand side,
while the left-hand side typically diverges, or at least stays
finite and nonzero, including nontypical cases. Thus, the On-
sager relations are broken for the class of nonequilibrium
systems considered.

V. DISCUSSION

We have considered a class of stochastic systems where
two subsystems have well-separated time scales, and interact
with different thermal baths. In addition to its direct physical
interest, our approach can have certain interesting analogies
with glasses, which we wish to suggest for further consider-
ation.

Glasses are weakly time-dependent nonequilibrium sys-
tems[15], and when cooling at a proper rafearying from

mo_deb This for_m of the Onsag_er relations is applicable 1072 K/s for window glass to 190K/s for metallic glasses
mainly for the linear cas¢4,13], in contrast to the more and 16'K/s for computer glassgselaxation times become

general relatior(44).

One of the arguments leading to E44) is anassumption
about the existence of a dissipative potentiB,82),
which generates heat currents

Q1=dp,F, Qp=0p,F. (47)

very large near the experimentally defined glassy tempera-
ture Tg. The metastable state thus reached slowly ap-
proaches equilibrium. For a certain class of systems, namely,
those having degrees of freedom with two well-separated
characteristic times, the nonequilibrium state can be de-
scribed by assigning different temperatutses-called effec-

tive or fictive temperatureqd15,16,9,10. In a certain time

Then Eq.(44) follows as a simple consequence. As is wellwindow these two-temperature models allow a quasistatic
known, dissipative potential exists in the linear regime, anddescription in which the slow modes appear to be coupled to

coincides there with entropy productiph—5]. Since the va-

a real heat bath at the present fictive temperature. Indeed, on

lidity of Eq. (44) in the linear regime is a fundamental theo- time scales of the order of the characteristic titgg, the
rem connected with the time-inversion invariance of thefictive temperature remains constant. A typical decay is of
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the form 1/In¢,us/t1) [9]; in the long time regime  ,t;,
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it nevertheless allows a thermodynamic description. The

this hardly changes for times that are large but still of thegeneralized thermodynamics can be obtained by minimiza-
order oft,,s. The generalized thermodynamics presented byion of the energy, keeping all entropies fixed. Universal re-
us in Sec. Il has clear analogies with glassy thermodynamicitions, Eqs.(37) and (38), are obtained between entropy
[10,9]. In spite of the fact that the second temperature is noproduction and energy dissipation. Energy dissipation
self-generated by the system, but is introduced by the redjontrast to entropy productiptoses its leading term when

thermal bath, one can expect that mahgrmodynamicela-

the temperature of the bath with the slow degrees of freedom

tions do not depend on the concrete process that generat@@es to zero. Finally, we show that the nonlinear Onsager
this temperature. Further steps in this direction were made ifelation for heat transfer in the steady adiabatic state is al-
Refs.[11,17, where this analogy was investigated in the ways broken, reflecting the system’s strongly nonequilibrium
context of fluctuation-dissipation relations and responsé&haracter. As the effect is of order unity, it can be testable

functions.

experimentally.

To conclude, we shall briefly reiterate the main results of

the present paper. We consider a class of steady systems with
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